12 C. ROBERT AND G. CASELLA
Carpenter, J., Clifford, P. and Fernhead, P. (1997).
Building robust simulation-based filters for evolving
datasets. Technical report, Dept. Statistics, Oxford
Univ.
Casella, G. and Ge orge, E. I. (1992). Explaining the Gibbs
sampler. Amer. Statist. 46 167–174.
MR1183069
Casella, G., Lavine, M. and Robert, C. P. (2001). Ex-
plaining the perfect sampler. Amer. Statist. 55 299–305.
MR1939363
Celeux, G. and Diebolt, J. (1985). The SEM algorithm:
A probabilistic teacher algorithm derived from the EM al-
gorithm for the mixture problem. Comput. Statist. Quater
2 73–82.
Celeux, G. and Diebolt, J. (1990). Une version de type
recuit simul´e de l’algorithme EM. C. R. Acad. Sci. Paris
S´er. I Math. 310 119–124.
MR1044628
Chan, K. and Geyer, C. (1994). Discussion of “Markov
chains for exploring posterior d istribu tion.” Ann. Statist.
22 1747–1758.
Chen, M.-H. , Shao, Q.-M. and Ibrahim, J. G. (2000).
Monte Carlo Methods in Bayesian Computation. Springer,
New York.
MR1742311
Churchill, G. (1995). Accurate restoration of DNA se-
quences (with discussion). In Case Studies in Bayesian
Statistics ( C. Gatsonis and J. S. Hodges, eds.) 2 90–148.
Springer, New York.
Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley,
New York. Revised reprint of the 1991 edition.
MR1239641
Damien, P., Wakefield, J. and Walker, S. (1999). Gibbs
sampling for Bayesian non-conjugate and hierarchical mod-
els by using auxiliary variables. J. R. Stat. Soc. Ser. B Stat.
Methodol. 61 331–344.
MR1680334
Del Moral, P., Doucet, A. and Jasra, A. (2006). Sequen-
tial Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat.
Methodol. 68 411–436.
MR2278333
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM al-
gorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39
1–38.
MR0501537
Diebolt, J. and Robert, C. P. (1994). Estimation of finite
mixture distributions through Bayesian sampling. J. Roy.
Statist. Soc. Ser. B 56 363–375.
MR1281940
Dimakos, X. K. (2001). A guid e to exact simulation. Inter-
nat. Statist. Rev. 69 27–48.
Doucet, A., de Freitas, N. and Gordon, N. (2001). Se-
quential Monte Carlo Methods in Practice. Springer, New
York.
MR1847783
Doucet, A., Godsill, S. and Andrieu, C . (2000). On se-
quential Monte Carlo sampling methods for Bayesian fil-
tering. Statist. Comput. 10 197–208.
Dupuis, J. A. (1995). Bayesian estimation of movement
and survival probabilities from capture–recapture data.
Biometrika 82 761–772.
MR1380813
Eckhardt, R. (1987). Stan Ulam, John von Neumann, and
the Monte Carlo method. Los Alamos Sci . 15 Special Issue
131–137. MR0935772
Ehrman, J. R., Fosdick, L. D. and Handscomb, D. C.
(1960). Computation of order parameters in an Ising lattice
by the Monte Carlo method. J. Math. Phys. 1 547–558.
MR0117974
Fern
´
andez, R., Ferrari, P. and Ga rcia, N. L. (1999).
Perfect simulation for interacting point processes, loss n et -
works and Ising models. Technical report, Laboratoire
Raphael Salem, Univ. de Rouen.
Fill, J. A. (1998a). An interruptible algorithm for perfect
sampling via Markov chains. Ann. Appl . Probab. 8 131–
162.
MR1620346
Fill, J. (1998b). The move-to front rule: A case study for
two perfect sampling algorithms. Prob. Eng. Info. Sci 8
131–162.
Fismen, M. (1998). Exact simulation using Markov chains.
Technical Report 6/98, Institutt for Matematiske Fag,
Oslo. Diploma-thesis.
Gelfand, A. E. and Dey, D . K. (1994). Bayesian model
choice: Asymptotics and exact calculations. J. Roy. Statist.
Soc. Ser. B 56 501–514.
MR1278223
Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-ba-
sed approaches to calculating marginal densities. J. Amer.
Statist. Assoc. 85 398–409.
MR1141740
Gelfand, A. E., Smith, A. F. M. and Le e, T.-M. (1992).
Bayesian analysis of constrained parameter and truncated
data problems using Gibbs sampling. J. Amer. Statist. As-
soc. 87 523–532.
MR1173816
Gelfand, A., Hills, S., Racine-Poon, A . and S mith, A.
(1990). Illustration of Bayesian inference in normal data
mod els using Gibbs sampling. J. Amer. Statist. Assoc. 85
972–982.
Gelman, A. and Rubin, D. (1992). Inference from itera-
tive simulation using multiple sequences (with discussion).
Statist. Sci. 7 457–511.
Geman, S . and Geman, D. (1984). Stochastic relaxation,
Gibbs distributions and the Bayesian restoration of images.
IEEE Trans. Pattern Anal. Mach. Intell . 6 721–741.
George, E. and McC ulloch, R. (1993). Variable selection
via Gibbbs sampling. J. Amer. Statist. Assoc. 88 881–889.
George, E. I. an d Robert, C. P. (1992). Capture–recapture
estimation via Gibbs sampling. Biometrika 79 677–683.
MR1209469
Geyer, C. (1992). Practical Monte Carlo Markov chain (with
discussion). Statist. Sci. 7 473–511.
Geyer, C. J. and M øller, J. (1994). Simulation proced ures
and likelihood inference for spatial point processes. Scand.
J. Statist. 21 359–373.
MR1310082
Geyer, C. and Thompson, E. (1995). Annealing Markov
chain Monte Carlo with applications to ancestral inference.
J. Amer. Statist. Assoc. 90 909–920.
Gilks, W. (1992). Derivative-free adaptive rejection sam-
pling for Gibbs sampling. In Bayesian Statistics 4
(J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M.
Smith, eds.) 641–649. Oxford Univ. Press, Oxford.
Gilks, W. R. and Ber zuini, C. (2001). Following a moving
target—Monte Carlo inference for dynamic Bayesian mod-
els. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 127–146.
MR1811995
Gilks, W. , Best, N. and Tan, K. (1995). Adaptive rejection
Metropolis sampling within Gibbs sampling. Appl. Statist.
44 455–472.
Gilks, W. R., Roberts, G. O. and Sahu, S. K. (1998).
Adaptive Markov chain Monte Carlo through regeneration.
J. Amer. Statist. Assoc. 93 1045–1054.
MR1649199