2
decahedron, a favourite of the Pythagorea ns. This is in
stark contrast to the way most of us first perceive math-
ematics — either as a sadistic form of punishment, or as
a bag of tricks for manipulating numbers. Like physics,
mathematics has evolved to as k broader questions.
Modern mathematics is the formal study of structures
that can be defined in a purely abstract way. Think of
mathematical symbols as mere labels without intrinsic
meaning. It doesn’t ma tter whether you write “two plus
two equals four”, “2 + 2 = 4” or “dos mas dos igual a
cuatro”. The notation used to denote the entities and the
relations is irrelevant; the only properties of integers are
those embodied by the relations between them. That is ,
we don’t invent mathematical structures — we discover
them, and invent only the notation for describing them.
So here is the crux of my arg ument. If you believe
in an external r e ality independent of humans, then you
must also believe in what I call the mathematical uni-
verse hypothesis: that our physical reality is a mathe-
matical structure. In other words, we all live in a g igantic
mathematical object — one that is more elaborate than a
dodecahedron, and probably also more complex than ob-
jects with intimidating names like Calabi-Yau manifolds,
tensor bundles and Hilbert spaces , which appea r in to-
day’s most advanced theories . Everything in our world
is purely mathematical — including you.
If that is true, then the theory of everything must be
purely abstract and mathematical. Although we do not
yet know what the theory would look like, particle physics
and cosmology have rea ched a point where all measure-
ments ever made can be explained, at least in principle,
with equations that fit on a few pages and involve merely
32 unexplained numerical constants (Physical Review D,
vol 73, 023505). So it seems possible that the cor rect
theory of everything could even turn out to be simple
enough to describe with equations that fit on a T-shirt.
Before discussing whether the mathematical universe
hypothesis is correct, however, there is a more urgent
question: what does it actually mean? To understand
this, it helps to distinguish between two ways of viewing
our external physical re ality. One is the outside overview
of a physicist studying its mathematical str ucture, like
a bird surveying a landsc ape from high above; the o ther
is the inside view of an obse rver living in the world de-
scribed by the structure, like a frog liv ing in the land-
scape s urveyed by the bird.
One issue in relating these two perspectives involves
time. A mathematical structure is by definition an ab-
stract, immutable entity ex isting outside of space and
time. If the history of our universe were a movie, the
structure would corres po nd not to a single frame but to
the entire DVD. So from the bird’s perspective, trajec-
tories of objects moving in four-dimensional space-time
resemble a ta ngle of spaghetti. Where the frog sees
something moving with constant velocity, the bird sees
a straight strand of uncooked spaghetti. Where the frog
sees the moon orbit the Earth, the bird sees two inter-
twined spa ghetti strands. To the frog, the world is de-
scribed by Newton’s laws of motion and gravitation. To
the bird, the world is the geometry of the pasta.
A further subtlety in relating the two perspectives in-
volves explaining how an observer could be purely math-
ematical. In this example, the frog itself must consist of
a thick bundle o f pa sta whose highly complex structure
corresponds to particles that store and process informa-
tion in a way that gives rise to the familiar sensation of
self-awareness.
Fine, so how do we test the mathematical universe
hypothesis? For a start, it predicts that further math-
ematical r egularities remain to be discovered in nature.
Ever since Galileo promulgated the idea of a mathemat-
ical cosmos, there has been a steady progression of dis-
coveries in that vein, including the standard mo del of
particle physics, which captures striking mathematical
order in the microcosm of elementary particles and the
macrocosm of the early universe.
That’s not all, however. The hypothesis also makes a
more dramatic prediction: the existence of parallel uni-
verses. Many types of “multiverse” have been proposed
over the years, and it is use ful to classify them into a four-
level hierarchy. The first three levels corre spond to non-
communicating parallel worlds within the same math-
ematical structure: level I simply means distant regions
from which light has not yet had time to reach us; level II
covers regions that are fore ver unr eachable because of the
cosmologic al inflation of intervening space; and le vel III,
often called “many worlds”, involves non-communicating
parts of the so-called Hilbert space of quantum mechanics
into which the universe can “split” during certa in quan-
tum events. Level IV refers to parallel worlds in distinct
mathematical structures, which may have fundamentally
different laws of physics.
Today’s best estimates suggest that we need a huge
amount o f information, perhaps a Googol (10
100
) bits,
to fully describ e our frog’s view of the observable uni-
verse, down to the positions of every star and g rain of
sand. Most physicists hope for a theory of everything
that is much s impler than this and can be specified in
few enough bits to fit in a book, if not on a T-shirt.
The mathematical universe hypothesis implies that such
a s imple theory must predict a multiverse. Why? Be-
cause this theory is by definition a complete description
of reality: if it lacks enough bits to completely specify our
universe, then it must instead describe a ll possible com-
binations of stars, sand grains and such — so that the
extra bits that des c ribe our universe simply encode which
universe we are in, like a multiversal telephone number.
In this way, describing a multiverse can be simpler than
describing a single universe.
Pushed to its extreme, the mathematical universe hy-
pothesis implies the level-IV multiverse, which includes
all the other levels within it. If there is a par ticula r math-
ematical structure that is our universe, and its properties
correspond to our physical laws, then each mathemati-
cal structure with different properties is its own universe
with different laws. Indeed, the level-IV multiverse is