
Article
64. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex
sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).
65. Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated
preparation of single-stranded DNA libraries for the sequencing of DNA from ancient
biological remains and other sources of highly degraded DNA. Nat. Protoc. 15,
2279–2300 (2020).
66. Dee, M. C14 data pottery cofin burial excavated by Garstang in Nuwayrat (World
Museum, Liverpool, UK, 2016).
67. Vanthuyne, B. Early Old Kingdom Rock Circle Cemeteries in the 15th and 16th Nomes
of Upper Egypt. A Socio-archaeological Investigation of the Cemeteries in Dayr
al-Barshā, Dayr Abū
Ḥinnis, Benī Ḥasan al-Shurūq and Nuwayrāt. PhD thesis, KU
Leuven (2017).
68. Bronk Ramsey, C. Oxcal v.4.4.4 calibration program (2021); https://c14.arch.ox.ac.uk/
oxcal.html.
69. Reimer, P. J. etal. The IntCal20 Northern Hemisphere radiocarbon age calibration curve
(0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
70. Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
71. Bayliss, A. & Marshall, P. Radiocarbon Dating and Chronological Modelling: Guidelines
and Best Practice (Historical Association, 2022).
72. Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R. Improved collagen extraction by
modiied Longin method. Radiocarbon 30, 171–177 (1988).
73. Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230,
241–242 (1971).
74. Scorrer, J. etal. Diversity aboard a Tudor warship: investigating the origins of the Mary
Rose crew using multi-isotope analysis. R. Soc. Open Sci. 8, 202106 (2021).
75. Coplen, T. B. Normalization of oxygen and hydrogen isotope data. Chem. Geol. 72,
293–297 (1988).
76. Chenery, C. A., Pashley, V., Lamb, A. L., Sloane, H. J. & Evans, J. A. The oxygen isotope
relationship between the phosphate and structural carbonate fractions of human
bioapatite. Rapid Commun. Mass Spectrom. 26, 309–319 (2012).
77. Font, L., Nowell, G. M., Graham Pearson, D., Ottley, C. J. & Willis, S. G. Sr isotope analysis
of bird feathers by TIMS: a tool to trace bird migration paths and breeding sites.
J. Anal. At. Spectrom. 22, 513 (2007).
78. Nier, A. O. The isotopic constitution of strontium, barium, bismuth, thallium and mercury.
Phys. Rev. 54, 275–278 (1938).
79. Avanzinelli, R., Conticelli, S. & Francalanci, L. High precision Sr, Nd, and Pb isotopic
analyses using the new generation Thermal Ionisation Mass Spectrometer
ThermoFinnigan Triton-Ti®. Periodico di Mineralogia 74, 147–166 (2015).
80. Ican, M. Y., Loth, S. R. & Wright, R. K. Age estimation from the rib by phase analysis: white
females. J. Forensic Sci. 30, 853–863 (1985).
81. Ican, M. Y. & Loth, S. R. Determination of age from the sternal rib in white males: a test of
the phase method. J. Forensic Sci. 31, 122–132 (1986).
82. Meindl, R. S. & Lovejoy, C. O. Ectocranial suture closure: a revised method for the
determination of skeletal age at death based on the lateral-anterior sutures. Am. J. Phys.
Anthropol. 68, 57–66 (1985).
83. Lovejoy, C. O., Meindl, R. S., Pryzbeck, T. R. & Mensforth, R. P. Chronological
metamorphosis of the auricular surface of the ilium: a new method for the determination
of adult skeletal age at death. Am. J. Phys. Anthropol. 68, 15–28 (1985).
84. Brooks, S. & Suchey, J. M. Skeletal age determination based on the os pubis: a
comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum. Evol. 5, 227–238
(1990).
85. Trotter, M. & Gleser, G. C. Estimation of stature from long bones of American whites and
Negroes. Am. J. Phys. Anthropol. 10, 463–514 (1952).
86. Robins, G. & Shute, C. C. D. Predynastic Egyptian stature and physical proportions.
Hum. Evol. 1, 313–324 (1986).
87. Bass, W. M. Human Osteology: A Laboratory and Field Manual (Missouri Archaeological
Society, 2006).
88. Richard Scott, G. & Irish, J. D. Human Tooth Crown and Root Morphology (Cambridge Univ.
Press, 2017).
89. Howells, W. W. Skull Shapes and the Map: Craniometric Analyses in the Dispersion of
Modern Homo, Vol. 79 (Harvard Univ. Press, 1989) .
90. Scott, G. R. etal. rASUDAS: a new web-based application for estimating ancestry from
tooth morphology. Forensic Anthropol. 1, 18–31 (2018).
91. Wright, R. Guide to Using the CRANID Programs Cr6bInd: For Linear and Nearest
Neighbours Discriminant Analysis (2012); http://www.scribd.com/document/324417767/
CRANID6b-ManuaL-1-pdf
92. Ortner, D. J. & Putschar, W. Identiication of Paleopathological Conditions in Human
Skeletal Remains (Smithsonian Institution, 1985).
93. Aufderheide, A. C. & Rodríguez-Martín, C. The Cambridge Encyclopedia of Human
Paleopathology (Cambridge Univ. Press, 1998).
94. Hawkey, D. E. & Merbs, C. F. Activity‐induced musculoskeletal stress markers (MSM) and
subsistence strategy changes among ancient Hudson Bay Eskimos. Int. J. Osteoarchaeol.
5, 324–338 (1995).
95. Alves-Cardoso, F. & Assis, S. Exploring ‘wear and tear’ of joints and ‘muscle function’
assumptions in skeletons with known occupation at death. Am. J. Phys. Anthropol. 175,
689–700 (2021).
96. Wallace, I. J. etal. Experimental evidence that physical activity inhibits osteoarthritis:
implications for inferring activity patterns from osteoarthritis in archeological human
skeletons. Am. J. Biol. Anthropol. 177, 223–231 (2022).
97. Wilkinson, C. M. & Mahoney, G. in Craniofacial Identiication (eds Wilkinson, C. M.
& Rynn, C.) 222–237 (Cambridge Univ. Press, 2012).
98. El-Mehallawi, I. H. & Soliman, E. M. Ultrasonic assessment of facial soft tissue thicknesses
in adult Egyptians. Forensic Sci. Int. 117, 99–107 (2001).
99. Wilkinson, C. M. Facial reconstruction—anatomical art or artistic anatomy? J. Anat. 216,
235–250 (2010).
100. Rynn, C., Balueva, T. & Veselovskaya, E. in Craniofacial Identiication (eds Wilkinson, C. M. &
Rynn, C.) 193–202 (Cambridge Univ. Press, 2012).
101. Wilkinson, C. M. Cognitive bias and facial depiction from skeletal remains.
Bioarchaeology Int. 4, 1–14 (2021).
102. Swali, P. etal. Yersinia pestis genomes reveal plague in Britain 4000 years ago.
Nat. Commun. 14, 2930 (2023).
103. Fellows Yates, J. A. etal. Reproducible, portable, and eficient ancient genome
reconstruction with nf-core/eager. PeerJ 9, e10947 (2021).
104. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming,
identiication, and read merging. BMC Res. Notes 9, 88 (2016).
105. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler
transform. Bioinformatics 26, 589–595 (2010).
106. Meyer, M. etal. A high-coverage genome sequence from an archaic Denisovan individual.
Science 338, 222–226 (2012).
107. Peltzer, A. etal. EAGER: eficient ancient genome reconstruction. Genome Biol. 17, 60
(2016).
108. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0:
fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics
29, 1682–1684 (2013).
109. Meyer, M. etal. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos
hominins. Nature 531, 504–507 (2016).
110. Skoglund, P. etal. Separating endogenous ancient DNA from modern day contamination
in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).
111. Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and
endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224
(2015).
112. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation
sequencing data. BMC Bioinf. 15, 356 (2014).
113. Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identiication of
ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482
(2013).
114. Li, H. etal. The sequence alignment/map format and SAMtools. Bioinformatics 25,
2078–2079 (2009).
115. Schiffels, S. SequenceTool. https://github.com/stschiff/sequenceTools (2022).
116. Briggs, A. W. etal. Removal of deaminated cytosines and detection of invivo methylation
in ancient DNA. Nucleic Acids Res. 38, e87–e87 (2010).
117. Schönherr, S., Weissensteiner, H., Kronenberg, F. & Forer, L. Haplogrep3—an interactive
haplogroup classiication and analysis platform. Nucleic Acids Res. 51, W263–W268
(2023).
118. Martiniano, R., De Sanctis, B., Hallast, P. & Durbin, R. Placing ancient DNA sequences into
reference phylogenies. Mol. Biol. Evol. 39, msac017 (2022).
119. Allentoft, M. E. etal. Population genomics of Bronze Age Eurasia. Nature 522, 167–172
(2015).
120. Altınıık, N. E. etal. A genomic snapshot of demographic and cultural dynamism in Upper
Mesopotamia during the Neolithic Transition. Sci. Adv. 8, eabo3609 (2022).
121. Antonio, M. L. etal. Ancient Rome: a genetic crossroads of Europe and the Mediterranean.
Science 366, 708–714 (2019).
122. Broushaki, F. etal. Early Neolithic genomes from the eastern Fertile Crescent. Science
353, 499–503 (2016).
123. Clemente, F. etal. The genomic history of the Aegean palatial civilizations. Cell 184,
2565–2586.e21 (2021).
124. de Barros Damgaard, P. etal. The irst horse herders and the impact of early Bronze Age
steppe expansions into Asia. Science 360, eaar7711 (2018).
125. Damgaard, P. etal. 137 ancient human genomes from across the Eurasian steppes. Nature
557, 369–374 (2018).
126. Feldman, M. etal. Late Pleistocene human genome suggests a local origin for the irst
farmers of central Anatolia. Nat. Commun. 10, 1218 (2019).
127. Fregel, R. etal. Ancient genomes from North Africa evidence prehistoric migrations to
the Maghreb from both the Levant and Europe. Proc. Natl Acad. Sci. USA 115, 6774–6779
(2018).
128. Fu, Q. etal. Genome sequence of a 45,000-year-old modern human from western
Siberia. Nature 514, 445–449 (2014).
129. Fu, Q. etal. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).
130. Gokhman, D. etal. Differential DNA methylation of vocal and facial anatomy genes in
modern humans. Nat. Commun. 11, 1189 (2020).
131. Haber, M. etal. A transient pulse of genetic admixture from the crusaders in the near east
identiied from ancient genome sequences. Am. J. Hum. Genet. 104, 977–984 (2019).
132. Haber, M. etal. A genetic history of the near east from an aDNA time course sampling
eight points in the past 4,000 years. Am. J. Hum. Genet. 107
, 149–157 (2020).
133. Hajdinjak, M. etal. Initial Upper Palaeolithic humans in Europe had recent Neanderthal
ancestry. Nature 592, 253–257 (2021).
134. Jones, E. R. etal. Upper Palaeolithic genomes reveal deep roots of modern Eurasians.
Nat. Commun. 6, 8912 (2015).
135. Kılınç, G. M. etal. The demographic development of the irst farmers in Anatolia.
Curr. Biol. 26, 2659–2666 (2016).
136. Lazaridis, I. etal. A genetic probe into the ancient and medieval history of Southern
Europe and West Asia. Science 377, 940–951 (2022).
137. Lazaridis, I. etal. The genetic history of the Southern Arc: a bridge between West Asia and
Europe. Science 377, eabm4247 (2022).
138. Lazaridis, I. etal. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218
(2017).
139. Mathieson, I. etal. Genome-wide patterns of selection in 230 ancient Eurasians. Nature
528, 499–503 (2015).
140. Narasimhan, V. M. etal. The formation of human populations in South and Central Asia.
Science 365, eaat7487 (2019).
141. Lazaridis, I. etal. Ancient human genomes suggest three ancestral populations for
present-day Europeans. Nature 513, 409–413 (2014).
142. Lipson, M. etal. Parallel palaeogenomic transects reveal complex genetic history of early
European farmers. Nature 551, 368–372 (2017).